Signal averaging for noise reduction in anesthesia monitoring and control with communication channels
نویسندگان
چکیده
This paper investigates impact of noise and signal averaging on patient control in anesthesia applications, especially in networked control system settings such as wireless connected systems, sensor networks, local area networks, or tele-medicine over a wide area network. Such systems involve communication channels which introduce noises due to quantization, channel noises, and have limited communication bandwidth resources. Usually signal averaging can be used effectively in reducing noise effects when remote monitoring and diagnosis are involved. However, when feedback is intended, we show that signal averaging will lose its utility substantially. To explain this phenomenon, we analyze stability margins under signal averaging and derive some optimal strategies for selecting window sizes. A typical case of anesthesia depth control problems is used in this development.
منابع مشابه
Enhancement of Noise Performance in Digital Receivers by Over Sampling the Received Signal
In wireless channel the noise has a zero mean. This channel property can be used in the enhancement of the noise performance in the digital receivers by oversampling the received signal and calculating the decision variable based on the time average of more than one sample of the received signal. The averaging process will reduce the effect of the noise in the decision variable that will approa...
متن کاملMonitoring Depth of Anesthesia by Nonlinear Correlation Measures
Background: Monitoring the depth of anesthesia (DOA) takes an important role for anesthetists in order avoiding undesirable reactions such as intraoperative awareness, prolonged recovery and increased risk of postoperative complications.The Central Nervous System (CNS) is the main target of anesthetic drugs, hence EEG signal processing during anesthesia is helpful for monitoring DOA. In order t...
متن کاملA Secure Chaos-Based Communication Scheme in Multipath Fading Channels Using Particle Filtering
In recent years chaotic secure communication and chaos synchronization have received ever increasing attention. Unfortunately, despite the advantages of chaotic systems, Such as, noise-like correlation, easy hardware implementation, multitude of chaotic modes, flexible control of their dynamics, chaotic self-synchronization phenomena and potential communication confidence due to the very dynami...
متن کاملSingle-Carrier Frequency-Domain Equalization for Orthogonal STBC over Frequency-Selective MIMO-PLC channels
In this paper we propose a new space diversity scheme for broadband PLC systems using orthogonal space-time block coding (OSTBC) transmission combined with single-carrier frequency-domain equalization (SC-FDE). To apply this diversity technique to PLC channels, we first propose a new technique for combining SC-FDE with OSTBCs applicable to all dispersive multipath channels impaired by impulsive...
متن کاملPower Allocation In Cooperative Relay Channels
This paper concerns power allocation in relay-assisted wireless channels for two-hop transmission. First, the transmitter sends the information to both the relay and receiver parts. Next, in the second hop, the transmitter cooperates with the relay to increase the received signal to noise ratio (SNR), assuming the relay makes use of the Amplify and Forward (AF) strategy. Moreover, it is assumed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009